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The non-linear interaction of a finite number of 
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It is predicted that, a t  a temperature difference a little less than that at  which 
motion starts according to linear stability theory, a steady hexagonal convective 
pattern will develop from finite-amplitude instabilities in a horizontal layer of 
fluid heated from below. This is because the first disturbances to start growing 
must be the triplet of two-dimensional 'rolls' which form angles of 60" with each 
other and whose amplitudes and phases first fall in certain critical ranges. The 
growth of these disturbances stabilizes all other disturbances and is such that 
ultimately the right phases and amplitudes occur to give hexagonal cells. If the 
temperature difference is increased somewhat beyond its critical value, the 
hexagonal pattern becomes unstable and a two-dimensional roll pattern is 
predicted. In  an intermediate temperature range, rolls are unstable but trans- 
port more heat than hexagons. ' Free-free ' boundary conditions, a viscosity 
which varies with temperature, and a fixed disturbance wave-number are 
assumed in this extension of the work of Palm (1960) and Segel & Stuart (1962). 
Other theoretical results and some experimental results are compared with the 
present predictions. 

1. Introduction 
We consider here certain aspects of the non-linear stability analysis of a linear 

temperature profile in a motionless layer of fluid the bottom of which is kept a 
constant temperature AT hotter than the top. Our primary aim is to clarify the 
mechanism leading to the hexagonal convection cells observed in controlled 
experiments. 

It will be assumed that the reader is familiar with the classical linear stability 
theory concerned with this problem-as in the book by Chandrasekhar (1961, 
ch. 2)-and also with the broad outlines of the non-linear investigations of 
Palm (1960), Segel & Stuart (1962), and Palm & Oiann (1964). We point out, 
however, that all one needs to know in advance is outlined in the paper preceding 
this one (Segel 1965) so that the two papers taken together are virtually self- 
contained. The papers of Palm (1960), Segel & Stuart (196a), and Segel (1965) 
will henceforth be referred to as I, 11, and 111. 

With a suitable choice of axes, the vertical velocity w for the solution corre- 
sponding to hexagonal cells can be taken proportional to 

2 cos q- nccx cos +nay + cos nay, (1.1) 

where x and y are horizontal co-ordinates and a! is a constant called the overall 
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wave-number. In  I and I1 it was shown that under certain conditions the inter- 
action of two disturbances proportional to 

cos Yg m x  cos ;nay and cos m y  (1.2) 

leads to a stable finite-amplitude equilibrium state in which the amplitude of 
the first disturbance is, as in ( l . l ) ,  precisely twice that of the second. This was 
encouraging but, leaving aside certain other difficulties to be discussed later, it 
was not clear why one should limit consideration to the pair of disturbances (1.2). 
Clarification of this point was the original goal of the work reported here. 

We shall show that cellular convection probably commences from a slightly 
subcritical situation in which the interaction of any finite number of disturbances 
having the same overall wave-number must result in a stable hexagonal cell. 
According to our theory, if the Rayleigh number is raised further, somewhat 
beyond its critical value, the hexagonal equilibrium state becomes unstable and 
is replaced by a state consisting of two-dimensional ‘roll’ cells. Comparison with 
experiment is discussed. 

2. Restriction to a single overall wave-number 
Because the same growth rate is predicted for all solutions having the same 

overall wave-number, linear stability theory cannot predict the shape of the 
convection cells which finally appear after motion commences. I n  this paper, we 
shall make a non-linear stability analysis of the motionless state under the 
assumption that only one overall wave-number and its harmonics need be con- 
sidered. 

This assumption is somewhat supported by experiment although it is not 
possible to say definitely whether a single wave-number or a narrow band of 
wave-numbers is observed. While complete understanding of the problem 
requires an explanation of the overall wave-number selection as well as the cell- 
shape selection for a given overall wave-number, progress will be made if only 
the latter is explained. Regarding the former, according to linear stability 
theory an overall wave-number CL can be selected which maximizes the growth 
rate in a supercritical situation (Rayleigh number W greater than its minimum 
critical value a,) or minimizes the decay rate in a subcritical situation (9 < W J .  
Particularly in the latter situation, however, it  is not clear that the linear effect 
dominates. The only relevant theoretical work appears to be that of Segel(1962)) 
where an indication was given of how non-linear terms might act to select a single 
overall wave-number. For B slightly greater than gc it  was shown that two 
two-dimensional roll disturbances, both of which grow exponentially by linear 
theory, interact in such a manner that one grows to a non-zero limiting amplitude 
while the other ultimately decays. The interaction of two rolls cannot give rise 
to a subcritical instability so an extension of this work (in progress) must be 
made before any conclusions can be drawn when W < LY~. 

Deferring further comment until later, for the reasons just discussed we assume 
that in a non-linear stability analysis of the basic temperature profile only first-order 
disturbances of a certuin oaerall wave-number a need be considered. We limit this 
hypothesis to first-order disturbances because when first-order disturbances of 
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overall wave-number a begin to grow, other wave-numbers appear at higher 
order and must be taken into account. It is to be expected that la - acl is small, 
but in our analysis the actual value of a is a matter of indifference. 

3. Reduction to a six-disturbance analysis 
Suppose that the Rayleigh number is slowly raised from well below gC. There 

are always small finite perturbations being introduced by irregularities in the 
experimental apparatus. The most accurate mathematical description of these 
perturbations may well involve Fourier integrals extending throughout the 
unbounded (x, y) horizontal plane, but we assume that it is possible to represent 
the (x, y) dependence by a finite sum of doubly periodic functions. (By properly 
taking more and more terms of such a sum one can approximate the Fourier 
integral arbitrarily closely-as is seen a t  once by considering the definition of 
the integral as the limit of a sum.) The first-order vertical velocity perturbation 
10 can then be written 

U J  = C [A,(t) cosm,xcosn,y+B,(t) cosm,xsinnPy 
P + CP(t) sin m, z cos n, y + D,(t) sin mpx sin n, y] fi,(z). (3.1) 

When, as in I and 11, we assume ‘free-free’ boundary conditions, fp(z) has the 
form fP(z) = sinnx+R(a,)ysin2nz+O(y2), 

where R is a constant depending on ap 5 r 1 ( 7 n ;  + n$)* and y is a dimensionless 
measure of the variation of viscosity with temperature, JyJ  6 1. (To facilitate 
calculations, the law by which the viscosity v varies with temperature T- 
defined to be zero at the bottom of the layer-about a reference value vo is 
assumed, as in I and 11, to be 

l r / ~ l ~  = 1 + y cos (nT/AT) + O(y2)  

but qualitative results remain the same for any small variations.) It is frequently 
convenient to use a formalism slightly different from (3.1), namely 

TV = C [q,(t) cos (m, x + n, y) + h’,(t) sin (m, x + np y) 
P + c,(t) cos (m, x - np y) + sp(t) sin (m, x - n, y)] f p ( z ) ,  (3.2) 

which separates terms associated with the wave-number vector (m,, n,) from 
those associated with the wave-number vector (mP, -n,). 

Most of the terms in (3.1) and (3.2) have an overall wave-number far different 
from a, and so certainly will decay whenever they are temporarily excited. At 
any rate, by hypothesis only those first-order disturbances with a single overall 
wave-number a (at or near a,) need be retained so in (3.1) and (3.2) we need only 
coiisider the terms for which 

t7L; + n; = 712a2 (3.3) 

A non-linear stability analysis of these disturbances will lead to amplitude 
equations for the unknown functions of time appearing in (3.1) or (3.3). The 
equation for a typical amplitude function A ,  will have the form 

A; = aA, + a,,,yA,A, + other 2nd-order terms 

+ 3rd-order terms +negligible terms. (3.4) 
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The first-order coefficient E: will be the same in every case; it is the linear amplifi- 
cation rate appropriate to the overall wave-number a and is proportional to 
9Z - 9?c. As illustrated in our analysis of the model equation in 111, the second- 
order terms must be proportional, through an order-one constant like al,,, to 
the small viscosity variation coefficient y. It is further shown in 111 that the 
appearance of the typical second-order term shown explicitly in (3.4) requires 

( A ,  cos m2x cos n2 y )  ( A ,  cos n8,x cos n, y )  that 

contain a term proportional to cos m,x cos n, y ;  this replication requirement 
imposes certain conditions on the m's and n's.  To find these conditions most 
easily it will prove helpful to associate an angle with every pair of x and y wave- 
numbers mp and np. From (3.3) there is a real angle ikp such that 

nip = TO: sin 31r,, np = TU cos @p. (3.5) 

(In essence, we are using polar co-ordinates to represent the wave-number 
vector.) We can now state an important result: If there i s  a term proportional to 
A,A,  in the equation for A; there will be a term proportional to A,A,  in the equation 
for A; and a term proportional to A ,  A, in the equation for A;. The three associated 
angles, $,, @,, and $,, can always be ordered so that the jirst and second angles are 
respectively 60" and 120" greater. than the third angle. The first part of the result 
is an obvious consequence of the replication requirement; the second part is 
proved in appendix 1. Sacrificing some precision to permit a more forceful 
statement of the result, we assert that second-order terms are associated with 
triplets of wave-number vectors lying 60" apart. 

This is important because, when experimental irregularities are sufficiently 
small, second-order terms are responsible for any subcritical instabilities which 
may occur. To see this let 6 denote the dimensionless order of magnitude of the 
inevitable random finite-amplitude perturbations and suppose that 92 is gradu- 
ally raised from well below gC, which means that E: is gradually raised from well 
below zero. Referring to (3.4), no initial perturbation will grow unless it is such 
that destabilizing higher-order terms override the stabilizing first-order terms 
in the amplitude equations. The magnitude of the first-order terms is surpassed 
by that of the second-order terms when W is such that - e z I yI S and by that 
of the third-order terms when --E x a2. If  we assume that inevitable experi- 
mental irregularities have been so reduced that the dimensionless disturbance 
magnitude 6 is considerably less than the magnitude of the dimensionless 
viscosity variation coefficient 171, then ly( 6 9 P and, as the Bayleigh number is 
slowly increased, the Jirst instabilities arise when [i f  it is possible] destabilizing 
second-order terms outweigh the stabilizing Jirst-order terms. 

We shall see that the second-order terms can have the right signs, as well as 
sufficient magnitude, to destabilize a situation which is stable according to 
linearized theory. Consequently, in the course of the random appearance of 
various disturbances, as 9 is slowly raised a certain set of disturbances- 
associated with a ' 60" triplet' of wave-number vector angles-will be the first 
whose second-order terms attain the proper size and sign to give a destabilizing 
influence exceeding the first-order stabilizing influence. The amplitudes of this 
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set of disturbances will then begin to increase. It might be thought that  within 
a short time after this happens other disturbances associated with other angles 
will also begin to grow, but it is shown in appendix 2 that third-order terms are 
stabilizing. When the set of disturbances which first becomes unstable starts to 
grow, the most dangerous of the other disturbances are just barely stable, their 
stabilizing first-order terms just barely outweighing their destabilizing second- 
order terms. The third-order terms, although negligible compared to the first- and 
second-order terms individually, are then not negligible compared to the algebraic 
sum of these terms. The growth of the small third-order terms then has the 
significant qualitative effect of never permitting the growth of even the most 
dangerous disturbances not in the initially growing set. The stabilizing third- 
order terms will also ultimately limit the amplitude of disturbances in the 
initially growing set. We therefore expect a final equilibrium state composed 
only of those modes, associated with a single triplet of angles, which are the first 
to start growing. 

Although a person interested only in the principal features of our argument 
can pass at once to $4, i t  might be helpful to examine the result just obtained 
from a slightly different point of view. With each angle $j = sin-l (nzj/7rra) we 
have associated two modes, proportional to 

C>(t) cos ( m p  + nfy) and LSj(t) sin (mix + q y ) ,  

so each triplet of angles is associated with six modes. Equivalently, we could 
have associated each angle with one mode, 

R,(t)  cos [mja +njy + O j ( t ) ] ,  

a roll of amplitude R j ( t )  and phase O,(t). From this point of view our assertion is 
that the final subcritical convective state is determined by the interaction of 
those three rolls, making angles of 60" with each other, whose amplitudes and 
phases first fall in certain critical ranges. 

It may seem unlikely that random disturbances in a very large layer will be 
in the form of a roll. Doubt concerning this point can probably be removed by 
recalling our assumption that the functions we encounter can be expanded in 
series like ( 3 . 2 ) ,  in which case any disturbance can be synthesized, to a suffi- 
ciently good approximation, from a large number of rolls. 

One's intuitive picture of how cellular orientation is determined might be that 
orientations are randomly selected in various patches with some sort of accom- 
modation taking place as convective patterns from various patches spread and 
merge. For this picture to be valid, other triplets of rolls in addition to  the first 
would have to start growing before the stabilizing influence associated with the 
growth of the first triplet has time to become significant. We assume that the 
experimental irregularities are such that this does not happen, which requires 
that the disturbance growth time be short compared to a representative correla- 
tion time of the perturbations. We are trying to explain the nearly uniform cell 
patterns sometimes observed. That such observations are rare is not surprising 
in view of the stringent conditions which appear to be required for the emergence 
of a single pattern over the entire layer. 
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To obtain a mathematical view of the mechanism under discussion in this 
section, consider a phase space in which the amplitude of each mode is repre- 
sented on a co-ordinate axis. This phase space can be regarded as the direct sum 
of six-dimensional subspaces on whose co-ordinate axes are represented the six 
modes connected with a triplet of angles. Before any disturbances start growing, 
each individual amplitude is very small and varies independently of the others. 
The point representing the state of the system (its co-ordinates at any time giving 
the amplitude of the various modes) moves randomly near the origin. Growth 
starts when the projection of this state-point in one of the six-dimensional 
subspaces first enters a region of the subspace, somewhat away from the origin, 
where destabilizing second-order terms outweigh stabilizing first-order terms. 
Then the projection of the state-point in this subspace moves away from the 
origin. Due to the growth of stabilizing terms in the amplitude equations the 
projection of the state-point in all other subspaces moves toward the origin. 
Because of the continual exterior disturbances to the fluid layer, the state-point 
still undergoes random forced vibrations but the tendency of the motion just 
sketched will not be altered if these vibrations are sufficiently small. 

FIGURE 1. Model of twelve-dimensional phase space when d < BC. Axes represent six- 
dimensional subspaces. H and H’ represent stable hexagonal equilibrium states toward 
which almost all trajectories starting a 1ittIe outside C’AC tend. Jumps from 1 to  2 or 
3 to 4 represent possible ways to avoid H and H’. 

The behaviour we have deduced of possible trajectories in phase space can be 
visualized in a simple case if we imagine the positive quadrant of the (2, y)-plane 
to be a model for an entire twelve-dimensional phase space, and the two positive 
co-ordinate axes to represent two six-dimensional subspaces. In  figure 1 we have 
represented with a heavier line those portions of the co-ordinate axes which 
correspond to regions where destabilizing second-order terms can outweigh 
stabilizing first-order terms. The above discussion shows that the trajectories 
starting near the origin must behave as sketched. Random effects force the 
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state-point across AC or AC’, starting it on its journey to one of the six- 
dimensional subspaces represented by OCH or OC’H’. A comparatively unlikely 
[by our assumption on disturbance growth and correlation times] forced jump 
across the dotted trajectories, as from 1 to 2 or from 3 to 4, is the only way to 
avoid a final state in OCH or OC’H’. By determining the nature of the second- 
and third-order terms in the amplitude equations we have thus been able to  
establish, conclusively but without detailed analysis, certain facts about the 
qualitative behaviour of trajectories in phase space. The state-point representing 
disturbances which are the first to start growing from a slightly subcritical 
situation is almost certain to approach an equilibrium point in one of the six- 
dimensional subspaces. The problem is thus reduced to a study of trajectories in 
one of these subspaces. 

4. Equations for the six disturbance amplitudes 
As is shown at the end of appendix 1,  by a rotation of the co-ordinate axes we 

can arrange it so that analysis of the trajectories in the six-dimensional subspace 
associated with the first set of disturbances to start growing is equivalent to 
following the development of a perturbation which, to lowest order, has the form 

w = w 7  y, t )g(z) ,  

# = U ( t )  sin q- nax sin &nay + V ( t )  cos g-nax sin *nay + W(t)  sin nay 

+ s ( t )  sin gg%rax cos *nay + y ( t )  cos q n a x  cos &nay + z(t) cos nay. (4.1) 

Very fortunately, it is possible to derive the six required amplitude equations 
indirectly by following the procedure of 111. We outline the steps briefly. By 
computing #2 and multiplying all terms of the same overall wave-number by the 
same constant, we find that the second-order terms obtained on substituting the 
first-order solution #(x, y, t )  g(z)  into the non-linear portion of the governing 
partial differential equations are, for some constants Ci, 

0 = C0[i(U2+ V 2 + 5 2 +  IT2)+*(W~+Z2)]F0(z) 

+ C,[ - ( U Z  - W X )  sin $&rax sin +nay - ( V Z  - W P) cos g-nax sin ;nay 

+ +( P V +  X U )  sin nay+ ( X Z +  U W )  sin g-nm cos 4nay 

+ ( Y Z +  V . ’ W ) c o s ~ ~ n a X C O S $ n a y + ~ ( X ~ +  Y2- U2- V2)c0snay]F1(z) 

+ C,[&UV sin 4 3   ax + . . . ]F3(z)  + C4[gUY sin J3 naxsin nay + ...I F4(z), 

where we have written out only one of the many terms of overall wave-numbers 
%/3a and 2a. The form of the F’s need not be specified. The C, terms replicate 
U ,  V ,  W ,  S, Y, 2, respectively, and so, for some constant a proportional to y ,  
give rise to the second-order terms in (4.2) below. TO find the third-order terms 
in the amplitude equations, we determine the replicating terms in Q5, for 
example (9%) U2X sin q-nax cos ~ n a y [ ~ C O  + %‘, + 2C3 + C,]. 
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We finally obtain the six amplitude equations 

U’ = eU+a[UZ-  W X ]  
- U [ R X 2 +  R2 Y2+ PZ2+ RU2 + RV2+ P W2]  - & Q V X Y ,  (4.2) 

V’ = e V + a [ V Z -  W Y ]  

W‘ = e W - $ a [ Y V + X U ]  

X’ = e x  - a [ X Z  + U W ]  

Y’ = e Y - a [ Y Z +  V W ]  

2’ = FZ-&L[xz+ Y2- u2- VZ] 

- V[R2X2  + RY2 + PZz+ RU2+ RV’+ P W 2 ]  - t Q U X  Y, (4.3) 

- W[gPX2+ $PY2+ R,Z2+ i P U 2 +  +PV2 + R, W2],  (4.4) 

- X [ R X 2  + R Y 2  + PZ2 + RU2+ R2 V2+ P W2]  - tQ U V Y ,  (4.5) 

- Y[RX2+ RY2 + PZ2+ R2 U 2 +  RV2 + PW2] - +QU V X ,  (4.6) 

- Z[$PX2+ &PYz+ R,Z2 + &PU2 + +PVz+ R, W 2 ] .  (4.7) 

For some constants Go, C,, C, and C4: 

R = -1-(4Co+2Cl+2C3+C4), 16 R, = 1(2C0+C4), 

R2 = ~ ~ ( 4 C o - 2 C , - 2 C ~ + 3 C ~ ) ,  Q = a(2C,+2C~-C4), P = $(Co+Cl+C3), 

so that R2 zz Rl-R, Q = 4R-2R1, P = 4R-R,. (4.8) 

With comparatively little work we have obtained six amplitude equations, 
through third order, which contain three unknown constants a, R, and R,. 
Various results can be found without knowing anything about these three 
constants, but a complete discussion of (4.2)-( 4.7) requires their determination. 
This is done most easily by setting U = V = W = X = 0 and performing a 
standard two-disturbance analysis to obtain the remaining equations 

Y’ = e Y - a Y Z -  Y(RY2+PZ2), 2’ = EZ-~aY2-z (gPY2+R122) ,  
(4.9a, b )  

in which a ,  R ,  and R, appear. But this twoldisturbance analysis has already 
been done in I and 11. Equations (4.9a) and (4.9b) are precisely equations (3.3) 
and (3.4) of 11; a, R, and R, are given in equations (3.6), (2.19) and (2.20) of 11. 
[The factor ( 1  +a;) in the first term on the right-hand side of 11, equation (2.19),  
should be (1 + a32.] 

If we evaluate E ,  a, R, and R, at a2 = 4,B = 277r4/4 (the linear theory critical 
values in the absence of viscosity variation with temperature), we can obtain an 
idea of their size. We find that 

F = 0*0225Y1(B! - gC), a = 0*5679,y, 

lOOR = [0*6658-2+0*425g-1+ 8.021 g,, R, = 0*1259,, (4.10) 

where B is the Prandtl number, Bl = g( 1 + 8)-l, and y is the dimensionless 
measure of viscosity variation with temperature defined in 9 3. We can thus see 
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that P, Q, R, and R, are positive in the region of interest but that R2 is negative 
if the Prandtl number has a value below about +. (The time and velocity- 
amplitude scales used in making (4.2)-(4.7) and (4.9) dimensionless are h 2 / K  and 
K / h ,  where K is the thermal conductivity and h is the thickness of the layer.) 

Although the six amplitude equations (4.2)-(4.7) are not tidy-looking, they 
actually possess considerable symmetry. The symmetry is present because, 
although possible rotations of the co-ordinate system are now ruled out, a 
reference angle having been determined by the wave-number vectors of the first 
subcritical disturbances to begin growing, translations of the axes are still 
possible but should not alter our conclusions. It makes the algebra a little 
simpler if we consider the effects of a translation through 361 43 in the x-direction 
and 211 in the y-direction: 

a = q - x +y = Qy,+q. (4.11) 

In  the translated variables, with subscript unity, the basic disturbance becomes 

#,(xl, yl, t )  = U, sin l&raxl sin $nay1 + V, cos e-nax1 sin &7ray1 

+ JK sin nayI + 9, sin ~$7rax1 cos Q7rayl 

+ Y, cos ~ & r a x l  cos +7rayl + 2, cos nayI, 

which has the same form as $(x, y, t) .  If C denotes a column vector with elements 
U ,  V ,  W ,  X, I’, and 2, the connexion between C and C, is given by 

CI = MK, 7) c, (4.12) 
where M ( [ , 7 )  is the matrix 

cos < cos - sin 5 cos 7 - cos f sin 7 sin f sin q 0 0 
sin <cosy cos[cosy -sin [sinq -cost sinq 0 0 
cos [ sin q - sin g sin 7 cos 6 cos - sin [ cos q 0 0 

‘ sin < sin 11 cos [ sin q sin [ cos 7 cos f cos 7 0 0 
0 0 0 0 cos2q -sin 37 
0 0 0 0 sin 2q cos2y 

(4.13) 

Since the translation of axes can be performed in either order by separate x and y 
translations, we are not surprised that the matrix associated with this translation 
is orthogonal and has the properties 

} (4.14) 
M(f? 7) = M(<> 0) M(O, 7) = M(O, 7) M(6, 01, 

det M ( [ ,  7) = [detM([, O ) ]  [detM(O, q ) ]  = 1 x 1 = 1.  

A little further investigation shows three quantities to be invariant under the 
translation 

u2+ vz+x2+ 1’2 = uz,+ V ? + X f +  1’;) w2+zz = w;+z;, 
u Y - V X  = u, Y, - qx,. 

The equations satisfied by the components of C, can be obtained by combining 
(4.2)-(4.7) according to the transformation (4.12). The new equations are 
identical with the old; this is to be anticipated, but provides a good check on the 
correctness of the original amplitude equations (4.2)-(4.7). 
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An alternative version of (4.2)-(4.7) more clearly shows the symmetries 
present. Instead of (4.1) we can write the first set of disturbances to start 
growing as 

@ = A,(t) cos ["CLY + B,(t)] + A2(t) cos [;.cc(&J - Y$x) - 8,(t)] 

+A3( t ) cos[ncx (~y+~&-03( t ) ] ,  (4.15) 

where the six unknown ftinctions are now the amplitudes A,(t) of rolls, inclined 
a t  angles of 60" with one another, having phase 8,(t); i = I ,  2,3. Comparing (4.1) 
and (4.15) we find 

A: = W 2 + Z 2 ,  Ai+Ag = $(U2+ V 2 + X z +  Y2) ,  A22-A; = Z ' U - X V ,  
(4.16) 

so (4.14) has the interpretation that the amplitudes of the rolls are invariant 
under axis-translation. We also find 

0, = - tan-,( WjZ) ,  0, = tan-,[( V -  X ) / (  U + Y ) ] ,  
O3 = tan-,[( V + X ) / (  Y - U ) ] .  (4.17) 

Using (4.16) and (4.17), equations (4.2)-(4.7) can be manipulated to give 

i A; = E A ~ - ~ A , A ~ c o s  (e,+H,+8,)-A,[R,A~+PA2,+PA;], 

A; = €A, - 4 ~ ,  cOs (0, + 8, + 8,) - A,[PA: + R,A; +PA;], 

A, 0; = aA,A3 sin (8,  + 8, + 03) ,  

A30i = aA,A,sin(8,+8,+8,). 

Tho symmetry evidenced in (4.18) is to be expected because of the lack of 
distinction among the three interacting rolls. It is further explained by the fact 
that  the arguments of the cosines in (4.15) vanish along three lines which cut out 
an equilateral triangle whose sides have length 2\13 (0, + 8, + H 3 )  [a translation- 
invariant quantity], so that permutation of indices on the amplitude and phase 
functions does not change the geometrical picture represented by (4.15). From 
(4.18) we learn that the phases B,(t) only change in our model because of the 
viscosity variation with temperature (a  + 0) .  I n  contrast to (4.2)-(4.7), (4.18) 
brings out the completely stabilizing nature of third-order terms obtained on 
interacting the three rolls of (4.15). 

5. The equilibrium solutions and their stability 
Thenext step is to find the possible equilibrium solutions of the system 

(4.2)-(4.7), or of (4.18) (see appendix 3). In  a subcritical situation the only pos- 
sible non-trivial solutions turn out to be a two-parameter family of hexagonal 
cells, the existence of a two-parameter €amily of equilibrium solutions being due 
to the presence of the two-parameter family of possible axis-translations. In a 
supercritical situation, the possible equilibrium solutions are as follows: 

(a )  the hexagonal cells just, discussed, 
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(b)  roll cells aligned along the x-axis or at angles of k 60" to the x-axis, 
( c )  a specie of generally closed cell like that labelled V on p. 294 of 11. 
A local stability analysis reveals that the cells of ( c )  are unstable. (Some 

details of these and subsequently mentioned analyses are given in appendix 4.) 
When /9-9?cl is sufficiently small, a local stability analysis of the hexagonal 
cells appears at first sight to show that they are neutrally stable. Four of the six 
characteristic roots of the resulting determinant are negative, corresponding to 
a four-dimensional manifold of locally decaying solutions. Two characteristic 
roots are zero. These would normally be ascribed to solutions which appear 
locally neutral but whose actual local growth or decay can only be determined by 
considering terms of higher order than those retained in a local linearization. 

t' < -Epl Undisturbed state 
- c1 < E < 0 Undisturbed state and hexagonal cells 

0 < t < 

Ez  < c Rolls 

Hexagonal cells 
Hexagonal cells and rolls < E < e2 

cI f a2/4T, el a2Q-aRI, c2 = a2Q-2(4R + Rl). 

TABLE 1.  Stable situations for various ranges of E (which is proportional to %-gR,).  The 
Rayleigh number 92 increases as one reads down the table. The solid line divides sub- 
critical (& < W,) from suporcritical ranges. The quantity a is a dimensionless measure of 
viscosity variation with temperature, assumed small. E ,  a,  R,  R,, Q and T are defined 
in (4.10), (4 .8 )  and (A3.18) .  

The situation considered here is unusual, however, in that the equilibrium points 
are not isolated but occur on a two-dimensional equilibrium surface in the six- 
dimensional phase space. Consider any given equilibrium point. A trajectory 
which starts from a nearby point on the equilibrium surface will neither approach 
the given equilibrium point nor recede from it; a trajectory through a point on 
the equilibrium surface consists entirely of that point. This is the reason for the 
two zero characteristic roots. Since the other four characteristic roots are 
negative, we would expect that the equilibrium surface is stable in that any 
trajectory which starts near the equilibrium surface ultimately reaches it. This 
expectation has been shown correct by N. Levinson (private communication). 

A slightly different way of viewing the matter starts with the observation that 
a local stability analysis of a given equilibrium state examines the growth or 
decay of a state which is initially 'near' the given equilibrium state. Take any 
particular hexagonal pattern as the given state. A nearby state which initially 
consists wholly or in part of a slightly translated pattern will approach the 
translated pattern, not the given pattern. (An imprecise view that our results 
show the hexagonal pattern to be neutral with respect to instantaneous transla- 
tions might lead to the incorrect deduction that the zero characteristic roots will 
not appear when one or both stress-free boundary conditions are replaced by 
boundary conditions appropriate to solid walls.) 

Once the significance of the zero characteristic roots is appreciated, stability 
determination becomes a routine matter. The results are given in table 1. We 

24 Fluid Mech. 21 



370 Lee A .  Xegel 

see that, if the Rayleigh number is slowly and continuously raised, hexagonal 
cells appear but then disappear, giving way to rolls aligned in one of the three 
directions determined by the hexagons' boundaries. 

6. Possible effects due to modes other than the six considered 
We have shown that in a subcritical situation a convective motion must be 

made up of disturbance modes (and their harmonics) associated with a triplet of 
wave-number vectors lying 60" apart. Which particular triplet appears depends 
on which disturbances are by chance the first whose second-order mutual 
destabilization outweighs first-order stabilizing effects. The final convective 
state must be a hexagonal pattern whose angular orientation is the same as that 
of the triplet selected by chance. We have further shown that this hexagonal 
pattern is stable to all six disturbances associated with the selected triplet, but 
not that it is stable to other disturbances. 

Let us therefore consider a disturbance, proportional to A(t )  say, whose 
associated wave-number vector is not in the selected triplet. What we have 
learned concerning the situation when second-order terms appear, and (in 
appendix 2 )  when indefinite third-order terms appear, shows that there are no 
terms like A U or A V W or X Y Z  in the A' amplitude equation. Linearizing this 
equation about an equilibrium point (u,,, v,,: w,,, x,,, yo, z,,) therefore gives 

A' = [C - S,U$ - S,V; - S, W: - S,X$ - S5y$ - X,Z,~] A ,  (6.1) 
where the Xi are positive constants given by Palm & Oiann (1964). In a sub- 
critical state the square bracket in (6.1) is negative so the hexagonal pattern is in 
fact stable to all disturbances. 

What happens to the stability of the hexagonal pattern when the Rayleigh 
number is slowly raised to a slightly supercritical value? It is easy to see that 
the pattern remains stable as long as E is small compared to a2. This is because 
(see 11, figure 1) when E < a2 equilibrium amplitudes of stable hexagons are 
proportional to a. Consequently when e is positive but small compared to a2, its 
destabilizing effect in (6.1) is outweighed by the stabilizing effects of the other 
terms. By a numerical examination of the terms in (6.1) for the special but 
representative case u,, = v,, = w,, = xo = 0, Palm & Oiann (1964) conclude in $ 5  
of their paper that even when c is not small no destabilizing influence arises from 
(6.1). If we consider the stability of the roll 

u,, = o,, = w,, = x,, = yo = 0, 2; = €/It,, 
(6.1 ) becomes A' = ER,~[R,-X,] A .  

From equation (2.8) of Palm & Oiann (1964), where 8 6  is denoted by T, it follows 
that R,- S,  is negative so again no destabilizing influence arises from (6.1). We 
conclude that table 1 summarizes correctly the stability behaviour of hexagons 
and rolls subject to all disturbances of the wave-number to which we are 
restricting ourselves. It is interesting that a t  no value of 9 can an instability 
develop due to a mode other than the six directly associated with the given 
hexagon or roll. 
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When E is positive we can no longer assert, as in tj 3, that a trajectory starting 
near the origin remains in the six-dimensional subspace where it starts. Although 
we do not expect it, we cannot rule out the possibility of an equilibrium state 
composed of modes associated with many different wave-number vectors. On 
the other hand, a hexagonal pattern will inevitably appear in a subcritical state 
as a result of finite amplitude instabilities. Until E is raised to the supercritical 
value e2 this pattern is stable to sufficiently small disturbances. Finite amplitude 
disturbances may grow-indeed we know that they can lead to rolls if E > el- 
but, subject as always to possible consequences of relaxing our restriction to one 
overall wave-number, we can assert that in sufficiently careful experiments 
hexagonal cells will appear when 19 - gc1 is small. 

We conjecture that the ultimate reason why our restriction to one overall 
wave-number is justified might be that, as is suggested to some extent by the 
results of Segel (1962), the initial growth of a set of disturbances of one overall 
wave-number puts stabilizing terms into the amplitude equations for disturb- 
ances of all other wave-numbers. A completely general analysis would then be 
determined by an analysis confined to a single overall wave-number in the same 
way that a single overall wave-number analysis is determined by the six dis- 
turbance analysis of $ 9  4 and 5. 

7. Heat transfer 
The graph of the predicted heat transfer is given in figure 2 .  The Nusselt 

number N (the ratio of the actual horizontally averaged heat transfer, which is 

"T 

FIGURE 2.  Dimensionless heat transfer N plotted against B, a quantity proportional to 
9-9c. Note that before they are a stable solution rolls transport more heat than 
hexagons. - , Stable; - - -, unstable. 

independent of height, to the heat transfer which would occur by conduction 
alone) is plotted against e. N can be computed from 

N = 9- ' (dT /d~) ,= , ,  
24-2 
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where T is the horizontally averaged temperature. The only stable equilibrium 
states can be represented by U = V = W = X = 0 so we can use a dimensionless 
version of the formula for Do,, in I (6.14), as corrected in 11, p. 293, to write 

-W-ldT/d~ = 1 + ~ 7 1 - 2 ( ~ 2 + 1 ) - 1 ( ~ Y 2 + 2 2 ) ~ ~ ~ 2 7 1 ~ +  .... 

For hexagons, Y = k 2 2  and 2 = 6, a constant defined in (A 3.6). For rolls, 
Y = 0 and Z2 = e/R,. 

With reference to figure 2, the following points should be noted. 
(i) In  the ranges of Rayleigh number where two stable modes are possible, a 

hysteresis effect should be observed in sufficiently accurate heat-transfer experi- 
ments. For example, as soon as e exceeds el hexagons can become replaced by 
rolls but relatively large finite amplitude disturbances are required. If the 
temperature difference between the bounding planes is slowly increased, the 
actual transition would be expected to take place for e somewhat closer to e2, 
above which infinitesimal disturbances cause hexagons to be replaced by rolls. 
Similarly, if the temperature difference is slowly decreased, rolls should be 
replaced by hexagons when E is near el. The smaller one can keep the inevitable 
finite-amplitude disturbances to the fluid, the more pronounced will be the 
observed hysteresis. In  a private communication, J. T. Stuart previously 
pointed out this phenomenon by observing the position in the ( Y ,  2)-plane of 
(A 3.4), the equilibrium point called V in 11. For el < 6 < e,, V is a saddle-point 
which lies on the separatrix dividing trajectories approaching the roll equilibrium 
point from those approaching the hexagonal equilibrium point. As 6 increases 
from el up to c2 this separatrix can be seen to move from arbitrarily near the roll 
equilibrium point to arbitrarily near the hexagonal equilibrium point, so that 
an ever smaller disturbance to the hexagons will cause the separatrix to be 
crossed and rolls to appear. 

(ii) The interesting effects depicted (instability a t  Rayleigh number below 
critical, heat-transfer jumps due to finite-amplitude instability, hysteresis) are 
prominent in proportion to the markedness of fluid property variation with 
temperature. Prandtl number effects enter through the constants ei. As P-+O 
all the various Rayleigh numbers distinguished in figure 2 approach 9Zc. As 
B +- 00, these Rayleigh numbers approach asymptotic values independent of B 
(see (4.10) and 3 9). 

(iii) For a range of Rayleigh numbers at  which rolls transfer more heat than 
hexagons, rolls are an unstable equilibrium mode but hexagons are stable. 
There is no contradiction here with the relative stability theory of Malkus & 
Veronis. Their result that the stable finite-amplitude solution, of the type we 
consider, will maximize heat transfer was derived for the Boussinesq equations 
where y = 0. As a matter of fact, Lortz has shown (private communication) that 
for the Boussinesq equations the heat transfer does have a maximum for rolls so 
there is agreement with Malkus & Veronis (1 958) if, contrary to the preference of 
these authors, one does not discard the rolls as ‘unphysical’ compared to limiting 
rectangles. (Both could be correct idealizations in appropriate instances, 
depending on whether one or many long thin ‘rectangular’ cells appear to span 
the width of a large convecting layer.) We note that, although the above remarks 
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lend some support to the relative stability criterion, Herring (1964) has pointed 
out that, even when the initial decay of a disturbance is predicted by Malkus & 
Veronis’s relative stability arguments, later growth may take place. Further, 
figure 2 shows that the relative stability concept is not correct for W near gC 
when equations more precise than those of Boussinesq are considered. It appears 
that relative stability should be considered a suggestive concept whose validity 
must be separately investigated in each new situation. 

The fact that there is a range of W for which unstable rolls transport more heat 
than stable hexagons can also be compared with Malkus’s maximum heat transfer 
hypothesis (Howard 1963), but it should be borne in mind that this hypothesis 
was formulated primarily to deal with W large while our result is for W in a range 
near Wc. Figure 2 is similar to figure 7 of Veronis’s (1959) study of finite-amplitude 
cellular convection in which an imposed uniform rotation plays a similar role to 
the variation of viscosity with temperature in the present work. Veronis pre- 
dicted subcritical effects corresponding to those found here, but was not able to 
give firm theoretical backing to his predictions since his steady-state calculations 
were not carried far enough and since no stability determination was made of the 
equilibrium points found. For certain ranges of the parameters involved, 
Veronis’s predictions have been verified in some unpublished work of J. Watson. 

Veronis (1  963) has discussed another situation in which subcritical instabilities 
are expected, namely, a layer of water whose top and bottom temperatures are 
respectively colder and hotter than 4”C, at which temperature the density of 
water is a maximum. Once again, subcritical effects corresponding to those 
found here were predicted but only partially verified. 

In Veronis’s (1959) rotating fluid study, he states that ‘under experimental 
conditions the two fluids, mercury and air, which are considered. . .will not 
exhibit. . .finite arhplitude instability’. In  water near 4 “C there is some evi- 
dence, not conclusive, that subcritical instabilities have occurred in experiments 
by Furumoto & Rooth (196 1) .  The possibility of observing subcritical instabilities 
caused by property variations with temperature is discussed in $9.  

8. Comments on some recent papers 
In  this section we sketch the relationships among this and other recent papers 

dealing with cell shape in thermal convection. 
When he had made considerable progress in the present work but before 

the computations needed for the final results were completed, the author saw 
an early version of Palm & 0iann (1964). It was most helpful, in $ 6  and in 
appendix 2 ,  to be able to use the values they had calculated for certain constants 
in the amplitude equations. It must also be mentioned that certain of the results 
derived (independently) here were anticipated by Palm & Miann (1964). For 
example, by a brief elegant argument they show that the stability of rolls, found 
in I1 for 0 < 6 < el when Y and Z modes are considered, is destroyed when a 
V mode is introduced. [A V mode is the disturbance in (4.1) with amplitude 
V ( t ) . ]  To give another example, Palm & 0iann (1964) consider the stability of 
hexagonal cells (where Y = ~f: 22) to V and W modes, but do not completely 
appreciate the significance of the zero characteristic root which they find. In 
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neither of the examples cited do they investigate the new equilibrium solutions 
which appear when new modes are considered. 

Bisshopp ( 1  960) has shown that there is a one-parameter family of solutions 
to the linear thermal stability problem, proportional to 

(8.1) 

which have hexagonal symmetry. To various values of the parameter 13 there 
correspond genuinely different flow patterns. Equation (8.1) fits into our six 
disturbance analysis if we take, for some constant 6, 

2 cos 4k J3 x cos iky + cos (ky + O ) ,  

k = na, Y = 2[, Z = [cosO, W = -6sin0, U = V = S = 0,  

but if U = V = 0 then (4.3) shows that unless u = 0 we must have W Y  = 0. 
Consequently, when we take variation of viscosity with temperature into 
account, there is a solution of the non-linear equations proportional a t  lowest 
order to (8.1) only when 8 = 0. When 19 = 0, (8.1) represents the hexagonal cell 
already considered. 

Considerable work on thermal convection appears in Inaugural Dissertations, 
done under the guidance of A. Schliiter, by Lortz (1961) and Busse (1962). This 
work is important and closely connected with the topic of this paper, and much 
of i t  is unpublished, so we shall summarize its principal features before com- 
menting on it. Notation already introduced will be used as much as is practicable. 

Busse (1962) studies equations in which the viscosity ql,  thermal conductivity 
q2, specific heat at constant pressure p3, and thermal expansion coefficient q4 are 
assumed to vary with temperature T according to laws of the form 

Pi = % O P +  y,(T - To) + O(Y3l (i = 1 , 2 , 3 , 4 ) ,  (8.2) 

where To is the mean of the fixed temperatures T, and Tl of the top and bottom 
bounding planes located a distance h apart. He shows that terms proportional 
to the bulk viscosity have no effect and assumes that the quantity gh/( Tl - T,) q30 
is very small so that the dissipation and changes of the qi with pressure can be 
neglected. 

The main part of Busse's work is an extension of Lortz's (1961) discussion 
of the standard Boussinesq equations, for which the qi are constants. I n  most of 
what follows we do not distinguish between the contributions of Lortz and 
Busse and, for brevity, mention only the farthest-reaching results of the two 
dissertations. 

I n  the style of the pioneering work of Malkus & Veronis (1958) a steudy 
solution-other than the motionless conductive state-is sought by expanding 
the velocity and temperature fields and the Rayleigh number in double power 
series in 6 and e, the series for the vertical velocity and the Rayleigh number 

w = c €iQWii, 9 = €i@J?ii. (8.3a, b) 

(To save writing, we mention only w of the three velocity components and the 
temperature.) Here g denotes the common order of magnitude of the yi, and 
E is an amplitude parameter which can be determined from (8.3b) since 9 and 
the 9ij will be known. 

taking the form W m 

$ = l , j = O  i , i = O  
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A second major part of the work is a linear stability analysis of the steady 
solution obtained. Assuming a time dependence exp (crt), one obtains a linear 
homogeneous problem for the eigenvalue a. The functions multiplying the 
differential operators in this problem come from the steady solution and hence 
are double power series in e and 5. One can therefore write, for cr and the vertical 
velocity eigenfunction 8, 

(8.4a, b) 

Once the steady solution is determined to a certain order., its stability can be 
analysed to the same order. In  practice, terms of a given order in w and 9%' and 
in 8 and v are computed simultaneously. 

At order B,  one is in essence confronted with the standard self-adjoint-type 
linear stability problem of the Boussinesq equations. ,GZo0 is taken to be the 
minimum critical Rayleigh number gC and a! to be the corresponding overall 
wave-number a!,. (This is for definiteness: the results to be found are true for 
any a! if 9,, is taken to be the corresponding critical Rayleigh number.) The 
most dangerous disturbance has overall wave-number ctC and a zero growth rate, 
so a,, = 0. The eigenfunction indeterminancy of linear theory is dealt with by 
keeping the analysis very general at  this stage. It is assumed that 

(8.6a, b) 

but the complex constants ck are not specified further. The series for Gl0 has the 
same form as that for wl0, with coefficients Ck. 

The equations for higher-order approximations are inhomogeneous. For 
solutions to exist, the inhomogeneous terms of these equations must be ortho- 
gonal to all solutions of the (self-adjoint) homogeneous equations. At O(e250) 

this existence condition gives R,, = CT,, = 0. At O(e3<O) the existence condition 
and the normalization condition (8.66) are shown to lead to an inhomogeneous 
set of N + 1 equations which completely determines the constants IckI and R,, 
once the wave-number vectors (mk, nk) are specified. For regular solutions, 
defined to have the property that the angles between neighbouring wave- 
number vectors (mk, nk) are equal, it is indicated that the O(ei5j) existence condi- 
tions not already considered (i 2 4, j 2 1 )  lead to no new restrictions. The same 
holds for semi-regular solutions formed by superposing one regular solution with 
another rotated through an angle 9, y+ =# Qn-. A detailed examination of the 
secular determinants giving the values of a2, associated with each of the possible 
steady solutions based on (8.5)-no restriction to regular or to semi-regular 
solutions is made-shows that, if no < terms are considered, only the rolls are 
stable for symmetric (free-free or fixed-fixed) boundary conditions. For asym- 
metric boundary conditions, the O(e4) terms are such that (formally) hexagons 
can also be stable even if 5 = 0, but this first happens when 9%' is 3.49?',, a value 
at which the convergence of the series is problematical. 
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At O(e<) the effect of <is not felt since for all boundary conditions the existence 
conditions require R,, = cr,, = 0. For asymmetric boundary conditions, this 
result is true because reference values for the viscosity, etc., are taken at  a 
certain determined height, not at the middle of the layer as for the other 
boundary conditions. Therefore, if W is based on the average viscosity, etc., an 
O(<) effect on Wc will generally be observed for asymmetric boundary conditions. 
At O(c2<) the existence condition requires R,, = CT,, = 0 except for hexagonal 
cells and superpositions of hexagonal cells. It is stated that further examination 
shows that only an equally weighted superposition of two hexagonal cells can in 
fact exist, but this result is not necessary because all superpositions of hexagons 
are later shown unstable. For hexagons, R,, is given by 

The constants Ai depend only on the Prandtl number. Their numerical value is 
given for free-free boundary conditions and for the other boundary conditions in 
the case of infinite Prandtl number. cr,, is shown to be such that when 6 + 0, for 
all boundary conditions, as the Rayleigh number is raised the motionless state 
is succeeded by hexagons and then by rolls in a way described accurately by 
table 1 except for the actual parameter values a t  which the transitions take place. 

In  a general comparison of the Lortz-Busse work and that of the present 
paper, the following points should be made. 

(i) The Lortz-Busse work is much more comprehensive in its consideration 
of general property variation with temperature and of several different types of 
boundary condition. On the other hand, the same qualitative results are found 
in all cases. It is gratifying that whenever they can be compared there is agree- 
ment among the results of Palm & Oiann (1964)) Lortz (1961)) Busse (1962)) and 
the present author. 

(ii) The analyses of Lortz-Busse and the present author are largely confined 
to a finite number of disturbances of the same overall wave-number-compare 
(8.5a) with (3.2) and (3.3)-although Busse does investigate perturbations of 
a wave-number slightly different from that of the steady solution. He finds 
bands of stable overall wave-numbers, proportional in length to 1 ~ 1 .  

(iii) The connexion between possible translations and zero disturbance growth 
rates is not mentioned by Eusse so his results as written only show the non- 
instability of rolls and hexagons. 

(iv) In the time-varying approach of the present paper, the behaviour of the 
final non-linear amplitude equations is determined by a local stability analysis 
of the equilibrium points. This is equivalent to the Lortz-Busse linearized 
stability analysis of possible steady solutions. On the other hand, the time- 
varying approach allows the possibility of a more exact analysis of the amplitude 
behaviour, for example, the determination of about how long it takes for dis- 
turbances to develop (as in $9)  or a numerical or Liapounoff analysis of the 
relative size of the stability regions for rolls and hexagons when they are both 
stable to infinitesimal disturbances. This approach also seems to give more 
understanding of why the results come out as they do. Examples of this occur in 



Interaction of disturbances to stratjied fluid 377 

our discussions of how convection begins from a subcritical state and how the 
orientation of the convective pattern is determined by the initial growth of one 
randomly determined set of disturbances a.nd the concurrent stabilization of all 
other disturbances. 

Time-dependent non-linear convection studies, using computers to integrate 
some truncated set of resulting non-linear ordinary differential equations, are 
becoming increasingly prevalent in meteorology and oceanography. A detailed 
analytic study of an idealized problem, such as the one considered here, ought to 
give insights as to what might happen in more realistic situations. As an example, 
the understanding we have gained of how the growth of some disturbances can 
stabilize others might be useful in explaining observations of the enhancement 
of some cloud streets and the suppression of others (Whitney 1961, p. 459). 

9. Comparison with experiment 
The most extensive experimental results with which we can compare the 

theoretical predictions are those of Silveston (1958) on the silicone oil AK 350. 
This very viscous substance has a Prandtl number of about 3500 so we can 
simplify our formulas to the infinite Prandtl number case. In  fact, as a glance 
at (4.10) will show, the infinite Prandtl number coefficients are still a good 
approximation for Prandtl numbers somewhat under 10. 

In  Silveston’s experiments, the silicone oil was held between two plates 7 mm 
apart and convection set in when the temperature of the bottom plate was about 
40 “C and that of the top plate about 20 “C. From table 2 of Silveston’s paper, 
the ratio of the viscosity difference between top and bottom to the mean viscosity 
was therefore about - 150/400. From the viscosity variation law in 0 3, this 
ratio can be taken to be 2y. Therefore y in this case is about -4.  (We note here 
that Silveston’s thermal expansion coefficients are consistently 10 times what 
they should be; this slip is reproduced in Chandrasekhar 1961, p. 66.) 

one sees that finite-amplitude 
instabilities can occur when is about 7y2 below gC while, from equation (5.9) 
in I, gC itself is lowered by about 130y2 from its constant viscosity value. The 
same result, that the linear effect contributes about 95 % of the total lowering, 
from its constant property linear theory value, of the Rayleigh number at  which 
convection can start, was made in the discussion of gases in 11. With y2 = &, 
motion is predicted to set in a t  a Rayleigh number about 1 % less than the 
free-free constant property value of about 660. Since Silveston’s careful experi- 
ments could only predict gC to within 3 %, it  is not surprising that not even the 
lowering of gC predicted by linear theory was observed. 

When B = CQ, the theory states that rolls can first appear when 9 -Be = 350y2 
and must appear when B - sc = 1270y2 (where the hexagons become unstable). 
For y2 = +g the rolls ought to appear by the time 92 is about 50 units, or about 
8 yo, above critical, while Silveston’s figure 12 indicates that the rolls appear at 
about 92 = 2200 or about 30 yo above the critical value of 1700 for fixed-fixed 
boundaries. The theoretical result is therefore of the right order of magnitude 
but quite a bit too low. On the other hand, quantitative agreement is not to be 
expected between a theory for free-free boundary conditions and experiments 

For infinite Prandtl number, by computing 
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for fixed-fixed boundary conditions. Moreover, in Silveston’s observations of 
changing cell patterns, the top copper plate used in his heat transfer measure- 
ments was replaced by a glass one, making the actual boundary condition a good 
deal different from the one of infinite conductivity which we have assumed. 

Examination of figure 9 of Silveston’s paper leads one to a possible reason why 
rolls appear at higher 92 than that predicted. This figure shows convective 
patterns a t  various Rayleigh numbers, and also gives the time since heating 
began. In  lOmin, W increases from 1700 to 1900. But, if one makes a crude 
computation of the time it takes disturbances to develop by considering 

one finds that the rolls of (9.1) develop from & to of their equilibrium value 
in 1 5 0 h 2 / ( 9 - 9 ? J ~  time units. Putting in the proper values of the distance 
between the planes ( h  = 0.7 cm) and thermal conductivity ( K  = 4 cm2/h) this 
gives a development time of twelve minutes at  W - gC = 100. A determination 
of the hexagon-roll transition from Silveston’s figure 9 would therefore over- 
estimate the transition Rayleigh number by quite a bit, since the temperature 
difference would have increased significantly before the transition would have 
had time to develop naturally. Another piece of evidence for this point of view 
is J. T. Stuart’s observation (private communication) that if 

u = v = w = x = Y = 0, ~ z / ( ~ z - R , z ~ )  = at, (9.1) 

w = Y cos $%rax cos +y + z cosnay (2 > Y ) ,  

which corresponds to a situation in which the hexagon has not quite developed 
into a roll, the cells are infinitely long but have slightly wavy boundaries. This 
may correspond to the ‘wormlike ’ shapes seen in some of Silveston’s pictures. 

To summarize, there seems to be a measure of agreement for the Rayleigh 
number at  which hexagons change into rolls. There has been no theoretical 
prediction of this transition until recently so it is not surprising that past experi- 
menters have noted it somewhat qualitatively as they passed on to higher 
Rayleigh numbers. A quantitative comparison of theory and experiment now 
seems practicable. 

The work described in this paper and 111 was partly sponsored by the 
Mechanics Branch of the Office of Naval Research and the National Science 
Foundation. The work was started when the author was an ONR-sponsored 
Guest Worker a t  the National Physical Laboratory, Teddington, and part of it 
was done while the author was on leave at the Department of Mathematics, 
Massachusetts Institute of Technology. J. T. Stuart, S. H. Davis, D. Lortz, and 
It. C. DiPrima made valuable suggestions. The author is grateful for the help of 
these institutions and individuals. 

R E F E R E N C E S  

BISSHOPP, F. 1960 On two-dimensional cell patterns. J .  Math. Anal. AppZ. 1, 373-85. 
BUSSE, F. 1962 Das Stabilitatsverhalten der Zellularkonvektion bei endlichcr Amplitude. 

CHANDRASEKHAR, S .  196 1 Hydrodyrzamic and Hydromagnetic Stability. Oxford : Clarendon 
Inaugural Dissertation, Ludwig-Maximilians-UniversitBt, Munich. 

Press. 



Interaction of disturbances to stratijied juid 379 

FVRUMOTO, A. & ROOTH, C. 1961 Observations on convection in water cooled from below. 
Notes of summer study program in geophysical fluid dynamics, Woods Hole Oceano- 
graphic Institute (unpublished). 

HERRING, J. R. 1964 Investigation of problems in thermal convection: rigid boundaries. 
Institute for Space Studies, Goddard Space Flight Center. 

HOWARD, L. 1963 Heat transport by turbulent convection. J .  Fluid Mech. 17, 405-32. 
LORTZ, D. 1961 Instabilitaten der stationaren Konvektionsstromungen endlicher Ampli- 

tude. Inaugural Dissertation, Ludwigs-Maximilians-UniversitSit, Munich. 
MALKUS, W. & VERONIS, G. 1958 Finite amplitude cellular convection. J .  Fluid Mech. 

4, 225-60. 
PALM, E. 1960 On the tendency towards hexagonal cells in steady convection. J .  Fluid 

Mech. 8 ,  153-92. 
PALM, E. & OIANN, H. 1964 Contribution to the theory of cellular thermal convection. 

J .  Fluid Mech. 19, 353-367. 
SEGEL, L. A. 1962 The non-linear interaction of two disturbances in the thermal convec- 

tion problem. J .  Fluid Mech. 14, 97-114. 
SEGEL, L. A. 1965 The structure of non-linear cellular solutions to the Boussinesq 

equations. J .  Fluid Mech. 21, 345-358. 
SEGEL, L. A. & STUART, J. T.  1962 On tho question of the preferred mode in cellular 

thermal convection. J .  Fluid Mcch. 13, 259-306. 
SILVESTON, P. L. 1958 Warmedurchgang in waagerechten Fliissigkeitsschichten. Forsch. 

Ing. Wes. 24, 29-32, 59-69. 
VERONIS, 0. 1959 Cellular convection with finite amplitude in a rotating fluid. J .  Fluid 

Mech. 5, 401-35. 
VERONIS, G. 1963 Penetrative convection. Astrophys. J .  137, 641-63. 
WHITNEY, L. F. 1961 Another view from Tiros I of a severe weather situation. Mon. 

Weath. Rev. 89, 447-60. 

Appendix 1 
Triplets of disturbances reinforcing each other at second order 

Remembering that our discussion is confined to modes of overall wave-number a, 
we examine in detail how second-order terms appear in the amplitude equations. 
An understanding of the replication principle (see 111, $2)  is assumed. 

It is convenient here to write, as in (3.2), the two disturbances corresponding 
to a single wave vector (m,, n,) as 

cos(m,x+n,y) and sin(m,x+n,y). (A 1.1) 

Using polar co-ordinates and (3.5), 

y = r sin 0, x = r cos 0, m, = na sin $,, n, = 7ra cos $,, (A 1.2) 

we note that m,x+n,y = 7rarsin($,+O). (A 1.3) 

Let us consider two disturbances described by two different wave-number 
vectors. The interaction of disturbances proportional to 

cos (mlx + n,y) and cos (m2x + n2y), (A 1.4) 

say, gives rise to a term proportional to 

1 2 cos (mlx + nly) cos (m2x + n2y) 

= 2 cos [nar sin ($, + O)] cos [nar sin (k2 + O ) ]  

E cos {nar[sin ($, + 0) +sin (P2 + O)]} + cos {7rar[sin ($, + 0) -sin ($2 + @)I}. 
(A 1.5) 
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If this interaction of two modes of overall wave-number a is to replicate a third 
mode of the same overall wave-number, one of the terms on the right-hand side 
of (A 1.5) must have overall wave-number a. If @ has overall wave-number a 
then, in polar co-ordinates, 

a,, + r - W ,  + r-2@ oo+n2a2@ = 0. (A 1.6) 

If, from (A 1.5), 

(A 1.6) turns out to require 

[sin ($1 + 0) k sin 

0 = cos{nar[sin($l+O) 

+ O)I2 + [cos ($1 + 0) i cos ($, + @)I2 = 1, (A 1.7) 

or cos - = T Q. (A 1.8) 

Let us focus our attention on the possibility of a positive sign in (A 1.8). This 
means that we are considering the second term on the right-hand side of (A 1.5). 
We associate this term with the subscript 3 : 

cos {nar[sin ($1 + 0) - sin ($, + O ) ] )  = cos (m3x + n3y) = cos [new sin ($3 + O)], 
From (A 1.8) we thus find (A 1.9) 

Since 

(A 1.9) implies that 

sin ($1 + 0) -sin ($1 f n/3 + 0) = sin ($1 T n/3 + 0), 

cos(m,x+n,y) = cosna[xcos($1Tn/3)+y~in($lTn/3)]. (A 1.10) 

Consequently one possibility is that disturbances proportional to cos (mlx + n, y) 
and cos (mzx + n,y) interact to  put second-order terms in the equation for the 
amplitude function associated with cos (m3x + n3 y), where $2 is related to $l 
by the alternatives given in (A 1.9) and, from (A l . l O ) ,  

$3 = T z i 3 .  (A 1.11) 

If we take the negative sign in (A 1.8) we find another possibility 

$2 = $1i 2n/3, $3 = $1 ?Z n/3. (A 1.12) 

If either or both of the terms in (A 1.4) are sines, it  is easy to see that all possi- 
bilities are still encompassed by (A 1.9), (A 1.11) and (A 1.12). We can thus say 
that there is a one-parameter family of six interacting disturbances, associated 
with three wave-number angles, whose first-order horizontal dependence is 
given by 

cos cos cos 
[Tar sin ($ - n/3 + B ) ] ,  [mar sin ($ + n/3 + B)] .  sin [Tar sin ($ + 011, sin sin 

(A 1.13) 

In  other words, disturbances interact with each other at second order only i f  they 
are associated with the same angle triplet $, 9 - 7113, $ + n13. 

If only one angle $ is of interest, it  can be chosen to be zero by the rotation of 

axes 0+0-$, 

giving six disturbances proportional to 
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where we have changed back to Cartesian co-ordinates. Reverting to our earlier 
notation where the horizontal dependence is given in the form cos mx cos ny, 
by taking sums and differences of the last four disturbances in (A 1.14) we can 
write the six disturbances as 

cos cos 
[47ra:y] [qnax],  [nay17 sin sin sin 

(A 1.15) 

or, in the form of (4.15), as rolls with varying phases. 

Appendix 2 

Consider the amplitude equation 

The nature of third-order terms in the amplitude equations 

A;(t) = ... - C 1 A 1 A ~ - C 2 A , A 2 A , - C 3 A 2 A 3 A , -  ...) (A 2.1) 

where C,, C,, and C3 denote constants and only certain terms have been written 
out. The first of these terms always either stabilizes or destabilizes, depending 
on whether C, is positive or negative. The effect of the second and third terms 
varies with the changing signs of A,(t), A2(t) ,  A3(t), and A4(t) (see 111, $3) .  Terms 
like the first will be called definite; terms like the second and third, indejinite. 
In  discussing the appearance of definite and indefinite third-order terms, let us 
denote by E(mz + ny) either cos (mx + ny) or sin (mx + ny). 

Definite third-order terms occur widely, for, since 

[Ax(t)E(m,x k n1y)124(t) E ( m p  f niy) 
= $A,2AiE(miz & niy) +other terms, 

there will be a definite third-order term proportional to A: Ai in every A; ampli- 
tude equation. The constant of proportionality has been computed by Palm & 
0iann (1964) and it is easily shown from their work that these definite third-order 
terms are stabilizing, a t  least when E. is small and a: is not too far from a:,. 

We now show that at third order indefinite third-order terms never appear if, 
as in (3.2), the (x, 9) dependence is taken proportional to E(mx+ny). The inter- 
action of disturbances proportional to 

E(m,x f n,y), E(m2x _+ n2y) and E(m3x k n,y) 

gives rise to terms of the form 

E[(m, m2 f m3)2 k (n, k n2 k n3)yl. (A 2.2) 

Consider one such term, 

E[(% - m2 + m3) x + (n, f n2 - n3) YI- (A 2.3) 

If this term is to replicate a term of overall wave-number a: we must have 

(m, - m2 + m3)2 + (n, -+ n2 - n3)2 = n2a2, 

or, using the polar co-ordinate representation of our wave-number vectors of 

- length na:, 
~rn1m2+n1n2+rn1m3-n1n3-m~2m3-n2n3 = - 1, 
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If we put t 5Z $1+$2, 7 $1+$39 

we have c o s f ; - c o s ~ - c o s ( [ - ~ )  = - 1 ,  (A 2.4) 

or ( 1 - c o s 2 ~ ) ~ ( 1 - c o s ~ ~ ) ~  = ( 1 - c o s ~ ) ( 1 + c o s ~ ) .  

Either l + c o s <  = 0, or 1-cosr = 0, (A 2.5a, b )  

or (1 + cos 7) (1 - cos [) = (I + c o s t )  (1  - cos y). 

which gives cost = C O S T ,  so, from (A2.4), t = 7. (A 2.6) 

The three possibilities of (A 2.6a, 6 )  and (A 2.6) give 

t = n; @, = 7 ~ - @ ~ ;  m, = m2, n, = -n2; 

7 = 0; @, = -$,; m, = -m3, n, = n,; 
[=?I; $ 2 =  $3; m2 = m,, n2 = n3. 

The same sort of results follow from all combinations of signs in (A 2.2). Hence. 
if three modes interact to replicate a fourth and all modes have the same overall 
wave-number, then it is necessary that one of the interacting modes have x and y 
wave-numbers of the same absolute value as those of a t  least one other. 

Let us examine more closely an interaction involving two modes having the 
same wave-numbers. The interaction of A2(t) cos (mlx + n, y), A3(t) sin (mlx + n, y) 
and A,(t) sin (m2x + n2 y) gives rise, among others, to a term proportional to 
cos (m3x + n3y), where m, = 2m, - m2 and n3 = 2n, - n2. If this term is to have 
overall wave-number CL then 

(2m, - m2)2 + ( 2n, - n2)2 = n2a2 

or, again using the polar co-ordinate representation of our wave-number vectors 
of length ~ C L ,  

and we have a special case of the definite terms already discussed. Once again 
the situation explicitly considered turns out to be entirely typical so that we can 
assert that if the (x, y) dependence is taken proportional to E(mx + ny) as in (3.2) 
then third-order terms are definite and stabilizing. If other forms of (x,  y) depend- 
ence are taken, the definite character of individual third-order terms need not 
be preserved. Indeed, although all third-order terms in (4.18) are definite, all 
those in (4.2)-(4.7) are not. (It can be shown that, with the representation (3.1), 
indefinite terms appear only if all four of the modes involved have x wave- 
numbers of the same magnitude and hence y wave-numbers of the same magni- 
tude.) On the other hand, the net third-order stabilizing effect persists no matter 
what equivalent representation for the disturbances is used. 

Appendix 3 

cos ($1 - $2) = 1; $, = $2; m, = m2 = m,, n, = n2 = n,; 

Possible equilibrium states 

It is much easier to find equilibrium solutions to (4.18) than to the equivalent set 
(4.2)-(4.7). We obtain first 

A,  = A ,  = 0; B,, B,, 8, arbitrary; A; = e/Rl; 

a) = A ,  cos [?ray + el] 
which, from (4.15), is a one-parameter family of rolls 

(A 3.1) 
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aligned parallel to the y-axis. With 8, = 0, this is identical with the equilibrium 
point labelled I1 in reference 11, p. 294. From the symmetry of (4 .18)  it  follows 
that there are two other one-parameter families of equilibrium solutions which 
are rolls making angles of k 60" with ( A 3 . 1 ) .  Superposition of two rolls at  
equilibrium is not possible, for A ,  = 0 and A,, A ,  + 0 leads to the contradiction 

cos (el + e, + 0,) = sin (0, + e, + 8,) = 0. 

IfAl,A,,A, + 0, ( 4 . 1 8 d , e , f )  imply 

sin(O,+O,+O,) = 0 so cos(O1+O,+8,) = k 1 .  ( A  3 .2a ,  b )  

A s  an example of how the calculations proceed, suppose a > 0 and take the minus 
sign in ( A 3 . 2 b ) .  Multiplying (4 .18a)  by A ,  and (4 .18b)  by -Al ,  and adding, 

If  A2, $- A:, substitution of aA,&-l for A,A,  in ( 4 . 1 8 ~ )  yields 

If A: $- A; and A: + A; two similar equations are obtained and one finds a contra- 
diction to the assumption that A;, A:, A;  are all unequal. 

If A ;  = A;, suppose A ,  = A,. Multiplying (4 .18b)  by and adding 

(4 .18  a )  gives (A2,-Ai) (.-&A,) = 0. (A 3.3) 

If the second factor in ( A  3 .3)  is zero we obtain 

gives (aA,-QA,A,) (A2,-A:) = 0. 

8 + = PA? + PA: + R,A;. 

A1 = a&-', A: = A; = ( 4 R ) - 1 ( s + ~ 2 & - 1 - P a 2 & - 2 )  = (4R)-1(~-R1a2&-*). 
( A  3.4) 

Since B,, O,, and 0, are required only to satisfy the single relation ( A  3 .2a ) ,  this is 
a two-parameter family of equilibrium solutions. When 8, = 8, = 8, = 0 we 
have the closed cell labelled V in reference 11, p. 294; other members of the two- 
parameter family correspond to translations of the same equilibrium pattern. 
Solutions of this type with A,,  A ,  = a&-' correspond to the same pattern 
rotated by k 60". 

If the first factor of ( A  3 .3 )  is zero we have 

(A 3.5) A2 - A2 - A2 - - 3 ,  A ,  = (25"-'[ak J(a2+4eT)], 

which, together with 

A; = A: = A;, A ,  = (2T)-l[-a* & & 2 + 4 € : T ) ]  = <, ( A  3.6) 

obtained by taking the plus sign in (4 .20b) ,  represents the hexagonal cells 
labelled I11 and IV in reference 11, p. 294, and translations thereof. 

Appendix 4 
Local stability of the equilibrium states 

It is best to use (4 .2) - (4 .7)  for stability calculations, because the non-linear 
terms are polynomials and because earlier results can be utilized. A s  an example 
of the notation and procedure to be used in this appendix, we will denote an 
equilibrium value of X ( t )  by xo, we will write X ( t )  = xo + x ( t ) ,  and we will neglect 
non-linear terms involving quantities like x ( t )  in determining the local stability 
of a given equilibrium point (uo, vo, wo, xo, yo,  zo) .  Rather than consider a general 
equilibrium point in each class, we will consider a particular equilibrium point 
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for which as many as possible of the quantities (uo,vo,wo,xo,yo,zo) are zero. 
This simplifies the calculations and is permissible because an axis translation 
cannot affect stability. 

For example, instead of considering the stability of the general hexagonal 
equilibrium point we will consider the stability of the special case 

yo = f 2x0,  2, = f c, 
the hexagonal equilibrium point discussed in 11. (5 is the constant given in 
(A 3.6).) We find, making simplifications by means of the equations satisfied by 
yo and 20, 

d = 0, yf = - 2Ry~y-yo(a+2Pz,)x, zf  = -1 2 ~ 0 ~ " + 2 ~ ~ 0 ~ y - ~ , ~ 2 ~ , ~ 0 + ~ ~ ~ ,  

u' = (2az0 -i- iQyi) u, v f  = 2ax,v - ayow, 

The y f  and z' equations are the same as those considered in I1 so we need only 
concern ourselves with the other four equations, which are independent of 
y and z .  The four new characteristic roots are 

0, 0,3az,, 2z,(a + &zo). 

AS discussed in 9 5, the two zero roots are expected; neither of the other two are 
positive when stability was predicted in 11, so there is no change in the results 
of I1 concerning stability of hexagons. 

The situation is otherwise for the generally closed cells, associated with 
(A3.4), which exist when e is positive and sufficiently large. Again extending 
the analysis of I1 where u, = uo = wo = xo = 0, we find that one of the four new 

(A 4.1) 
roots is - (4R)-l (Q2ea-2 + T) az,. 

Now in general for this class of equilibrium solutions, solving (4.7) for az, shows 
that there is no ambiguity in the sign of ax,,. TVith uo = uo = 0 this sign is negative 
so the root given in (A 4.1) is positive and these closed cells are always unstable. 
Stability was possible according to the two-disturbance analysis of 11. 

Analysis of the stability of the roll whose only non-zero element is z,,, where 
x! = e/R,, gives the six characteristic roots 

w f  = - l a  yov+axow. 

0, - Ze, e k ax, - Pzi (two identical roots for each choice of sign). 
(A 4.2) 

That there is only one zero root is due to the fact that the roll proportional t o  
z ,  cos m y ,  being unaffected by 2-translations, is a member of the one-parameter 
family of equilibrium solutions corresponding to possible y-translations. From 
(A 4.2), a necessary and sufficient condition for stability, regardless of the sign 
in z ,  = J(e/R,), is 

e > a2&-2Rl. 


